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Introduction. It is to Thomas Wieting1 that I owe my first exposure to some
characteristically elegant work by Roger Penrose2 that bears tellingly upon a
nest of foundational issues in quantum mechanics. Penrose draws upon certain
ideas that Etorre Majorana—incidentally to a classic note3 concerned with
the magnetic manipulation of atomic beams—had injected into the quantum
theory of angular momentum. Penrose remarks that [Majorana’s] “description
of general spin states is not very familiar to physicists. . . [though] it provides
a useful and geometrically illuminating picture.” It was in recognition of the
undeniable fact that “the Majorana picture of spin, while very elegant and also
remarkably economical. . . is still [after nearly seventy years! ] unfamiliar to the
vast majority of physicists” that J. E. Massad & P. K. Aravind undertook to
construct an “elementary account” of Penrose’s work, an account that proceeds
entirely without reference to Majorana.4 Thus was I motivated to make an effort
to gain some understanding of what it was that Majorana had accomplished
. . . and the world had elected to ignore, and why. Quite recently it has been
brought to my attention5 that Schwinger’s relatively little-known contributions
to the quantum theory of angular momentum were similarly motivated.

The work to which I have just referred (most of which was published
only belatedly, and in obscure places) is the subject of a retrospective essay
which Julian Schwinger contributed to a festschrift honoring the 80th birthday

1 “The Penrose Dodecahedron,”ReedCollege Physics Seminar of  November
.

2 Shadows of the Mind (); see especially Appendix C to Chapter 5.
Additional bibilographic information can be found in the introduction to my
“Spin matrices for arbitrary spin,” (), to which I will refer here as Part A.

3 “Atomi orientati in campo magnetico variabile,” Nuovo Cimento 9, 43–50
(1932)

4 “The Penrose dodecahedron revisited,” AJP 67, 631 (1999).
5 I am indebted to Victoria Mitchell for this news.
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of Isidore Rabi.6 Schwinger (–) graduated from Columbia University—
which, but for the intervention of Rabi, would have expelled him for gross
neglect of his non-technical classes—in  at the age of seventeen, and stayed
on to take his doctorate in . Schwinger considered it to be “a natural
consequence of [his] early association with Rabi and his atomic beam school7

[that he developed] a protracted fascination with atomic and molecular moments
and, more generally, the quantum theory of angular momentum.” It was from
Rabi that Schwinger became acquainted with Majorana’s work, which at first
he found “baffling [‘. . . ogni stato sarà rappresentato da 2j punti sulla sfera
unitaria. . . ’ Where did that come from?].” Schwinger promptly resolved that
question to his own satisfaction, but remarks that “my answer was only hinted
at in a  paper.” It is from that paper,8 and Schwinger’s remarks concerning
it, that I now quote:

“ ‘The evaluation of [a certain matrix element] may be carried
out, for arbitrary j, by a method which will not be given here.
The results are in complete agreement with those obtained
from Majorana’s general theorem’ (by which I meant formula).’
That method was, of course, the explicit construction of an
arbitrary angular momentum j as a superposition of 2j spin 1

2
systems. What was thus left implicit (did I then think it of so
little consequence?) was actually the most important result in
this work. . . ”

Schwinger returned to the subject in  under stimulus of a review
article9 in which Block and Rabi “remarked on the derivation of Majorana’s
formula from the spin 1

2 representation.” He undertook to write a paper
“supporting the thesis that the expression of symmetry concepts in quantum

6 A Festschrift for I. I. Rabi (Transactions of the New York Academy of
Sciences 38, 1977). Schwinger’s “The Majorana formula” appears on pages
170–172. Two previously unpublished papers (“A note on group theory and
quantum mechanics” () and “The Majorana formula” ()) are attached
as appendices.

7 Rabi (–), who had been a student of Otto Stern, was to receive
the Nobel Prize in  for “the resonance method for recording the magnetic
properties of the atomic nucleus,” work which led to the development of NMR.

8 “On nonadiabatic processes in homogeneous fields,” Phys. Rev. 51, 648
(1937). The  -year-old Schwinger states that “the purpose of this paper is to
point out that Güttinger equations are incorrect and lead to erroneous results
in any case other than that of the rotating field, which he considered. The
corrected equations are applied in the calculation of transition probabilities
between the various magnetic states of a field precessing with constant angular
velocity.” The Güttinger reference is to P. Güttinger, “Das Verhalten von
Atomen im magnetischen Drehfeld,” Zeits. f. Physik 73, 169 (1931), a reference
(one of only two) cited also by Majorana. Schwinger’s only other references are
to Majorana3 and a recent paper by Rabi.

9 Rev. Mod Phys. 17, 237 (1945).
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mechanics does not require the injection of group theory as an independent
mathematical discipline.” Specifically, he proposed to use “elementary quantal
operator methods” to obtain “a number of results that have thus far been
considered striking examples of the power of group theoretic methods.” All of
the results in question had to do with rotations/angular momentum, and first
on Schwinger’s list was Majorana’s theorem. But that paper (reproduced in its
incomplete state as appendix 1 in the Rabi Festschrift) was never completed—
a casualty, perhaps, of the quantum electrodynamical work which Schwinger
was soon to take up (the Shelter Island conference took place in June )
and for which he was to share a Nobel Prize in .

In  Schwinger wrote “On angular momentum,” to which he prepended
this

abstract: The commutation relations of an arbitrary angular
momentum vector can be reduced to those of the harmonic
oscillator. This provides a powerful method for constructing &
developing the properties of angular momentum eigenvectors.
In this paper many known theorems are derived in this way, and
some new results obtained. Among the topics treated are the
properties of the rotation matrices; the addition of two, three,
and four angular momenta; and the theory of tensor operators.

This 88-page monograph—the subject of the present commentary—might be
looked upon as a detailed realization (if stripped—except by implication—of
the group-theoretic polemics) of the intention Schwinger had formed in .
It comprises, in any event, Schwinger’s most comprehensive account of a point
of view and a body of technique he had been cultivating and advocating since
adolescence. But this monograph was never published.10 And though it
contains references to works by Weyl, Güttinger, van der Waerden, Racah and
Wigner, it surprisingly does not cite Majorana, nor does it contain any mention
of Majorana’s theorem/formula.

Schwinger was “made. . . aware, to my chagrin” of the latter oversight by
the publication of an elegant little paper by one Alvin Meckler.11 In response,
he wrote a short paper which he submitted to The Physical Review in ,
but that paper was “rejected by [the famously crusty] Editor S. Goudsmit for
reasons that I then found so incomprehensible that I cannot now recall them.”
The paper appears as appendix 2 in the Rabi Festschrift .

In his brief Festschrift essay Schwinger has one further thing to say about
his  monograph: citing the footnote that spans pages 242–245 in his

10 . . . except as USAEC Document NYO-3071, distributed by the Department
of Commerce Office of Technical Services, from which I obtained my copy in
 for 60 cents. “On angular momentum” was reprinted in L. C. Biedenhorn
& H. van Dam (editors), Quantum Theory of Angular Momentum (), which
has long been out of print.

11 “Majorana Formula,” Phys. Rev. 111, 1447 (1958). Meckler was attached
to the National Security Agency’s Division of Physical Sciences.
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Quantum Kinematics and Dynamics,12 he observes that “the operator
construction used in [the] angular momentum representation [of the  work
can be shown to appear] naturally, at a more elementary level than the
multiparticle viewpoint of second quantization.”

In his abstract Schwinger speaks of “oscillators” but not of “second
quantization;” here, in reference to that same work, he speaks of second
quantization but not of oscillators. It is, in my experience, a general feature of
Schwinger’s expository style that he achieves swift elegance—and has acquired
the reputation of a “difficult” author—by neglecting to inform his readers. . . in
so many plain words. . .what he has assumed, what his symbols are intended
to mean. Such information the reader is expected to glean inferentially, from
context, from details of the elegant dances in which those symbols indulge:
“Schwinger must mean this, else what he writes would be meaningless.”

Such, in brief, is the context in which I read “On angular momentum,”
and the reason that I consider the reading to carry with it an obligation to
write. One wonders why Schwinger’s work in this sphere is so little read.
Difficulty—part stylistic, part because the monograph is so crudely typed as
to be almost unreadable—may account for some if it. But perhaps Schwinger
was a victim also—as was Kramers before him13—of what might be called the
“group-theoretic hegemony,” which especially in the quantum theory of angular
momentum has been entrenched throughout virtually the entire history of
quantum mechanics.

It is interesting to reflect that the body of work discussed above radiates
from a “Where did that come from?” that the 17-year-old Schwinger asked of a
remark which the 26-year-old Majorana had considered too obvious to require
detailed explanation.

background

Classical isotropic oscillator. Look to the isotropic 2-dimensional classical
harmonic oscillator

H(p1, p2, x1, x2) ≡ 1
2m

{
(p2

1 + p2
2 ) + m2ω2(x2

1 + x2
2 )

}
(1.1)

= 1
2�ω

{
q2
1 + q2

2 + y2
1 + y2

2

}
(1.2)

= �ω
{

a∗
1a1 + a∗

2a2

}
(1.3)

12 This project was started and abandoned in . The typed notes, of which
I have treasured a copy since about , were published in their incomplete
state in .

13 See pages 7–8 in “Spin matrices for arbitrary spin” () for remarks
derived from Max Dresden’s H. A. Kramers: Betweeen Tradition and Revolution
().
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where14

y ≡
√

mω2

�ω x and q ≡
√

1
m·�ω p (2.1)

are dimensionless (subscripts surpressed), and

a ≡ 1√
2

{
y + iq

}
; a∗ ≡ 1√

2

{
y − iq

}
(2.2)

are, it should be noted, complex-valued.

From
[
x1, p1

]
=

[
x2, p2

]
= 1 (all other Poisson brackets constructable from

x1, p1, x2 and p2 vanish) obtain

[
y, q

]
= �

–1 :
{ identical subscripts surpressed,

other brackets vanish

whence [
a∗
1, a1

]
=

[
a∗
2, a2

]
= i

�
: all other a-brackets vanish

of which [
a∗

r , as

]
= i

�
δrs (3)

provides a useful summary.

Construct the complex 2-vector

aaa ≡
(

a1

a2

)
(4)

Adopt the usual definitions of the traceless hermitian Pauli matrices

σσ0 ≡
(

1 0
0 1

)
, σσ1 ≡

(
0 1
1 0

)
, σσ2 ≡

(
0 −i
i 0

)
, σσ3 ≡

(
1 0
0 −1

)

and form the real-valued observables

Qµ ≡ aaatσσµaaa : µ = 0, 1, 2, 3 (5)

Explicitly15

Q0 = a∗
1a1 + a∗

2a2

Q1 = a∗
1a2 + a∗

2a1

Q2 = −i(a∗
1a2 − a∗

2a1)
Q3 = a∗

1a1 − a∗
2a2




(6)

It is a quick implication of the commutation relations (3) that[
aaat

Maaa, aaat
Naaa

]
= 1

i�aaat[
M, N

]
aaa : any 2×2 matrices M and N (7)

14 For more detailed discussion of what is, after all, standard material, see
“Ellipsometry” () p. 63, from which I take my notation.

15 Beware: in “Ellipsometry” I had reason to adopt Stokes’ conventions rather
than Pauli’s, so the Q’s described there at (163) are cyclic permutations of those
described below.
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so from H = �ωQ0 = �ωaaat
Iaaa it follows that each of the Qµ is a constant of

the motion [
H, Qµ

]
= 0 : µ = 0, 1, 2, 3 (8)

while from a familiar commutation property of the Pauli matrices[
σσ1, σσ2

]
= 2iσσ3 ,

[
σσ2, σσ3

]
= 2iσσ1 ,

[
σσ3, σσ1

]
= 2iσσ2

we obtain Poisson bracket relations[
Q1, Q2

]
= 2

�
Q3[

Q2, Q3

]
= 2

�
Q1[

Q3, Q1

]
= 2

�
Q2


 (9)

The observables
Jk ≡ �

2Qk : k = 1, 2, 3 (10)

have (as the Lie generators of canonical transformations are in all cases obligated
to have) the physical dimensions of angular momentum (i.e., of action). They
satisfy [

J1, J2

]
= J3[

J2, J3

]
= J1[

J3, J1

]
= J2


 (11)

from which they emerge as the generators, within 4-dimensional phase space,
of a representation of O(3), the “accidental symmetry group”16 of the isotropic
oscillator—a system which on its face possesses only the O(2) symmetry
generated by

J2 = 1
2 (x1p2 − x2p1)

We observe finally that

Q2
0 − Q2

1 − Q2
2 − Q2

3 = 0 (12)

Evidently the observables Qµ , since subject to that constraint, cannot be
specified independently.17

16 For a good short introduction to this concept see H. V. McIntosh, “On
accidental degeneracy in classical & quantum mechanics,” AJP 27, 620 (1959).
See also footnote 20 in “Classical/quantum theory of 2-dimensional hydrogen,”
(February ).

17 Classical harmonic oscillators trace elliptical curves in configuration space.
Identical curves are—for other physical reasons—traced by the flying EEE -vector
of an on-rushing electromagnetic plane wave. We are not surprised, therefore,
to discover that Stokes’ theory of optical polarization makes tacit use of some
mathematical machinery quite similar to that just reviewed. . . and that an
equation of the form (12) plays a prominent role in Stokes’ theory. Reversing
the traffic of ideas, we can look upon the Qµ as mechanical analogs of the optical
Stokes parameters Sµ, and use Stokes’ theory to answer mechanical questions.
It becomes in this light clear that/how the conserved expressions Qµ serve
to describe the size/orientation/ellipticity/circulatory sense of the mechanical
trajectory.
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Isotropic quantum oscillator. Look now to the parallel quantum theory of an
isotropic oscillator. We have

H ≡ 1
2m

{
(p2

1 + p2
2 ) + m2ω2(x2

1 + x2
2 )

}
(13.1)

= 1
2�ω

{
q2

1 + q2
2 + y2

1 + y2
2

}
(13.2)

= �ω
{

a+
1 a1 + a+

2 a2 +
(

1
2 + 1

2

)
I
}

(13.3)

where
y ≡

√
mω2

�ω x and q ≡
√

1
m·�ω p (14.1)

are dimensionless self-adjoint operators (again subscripts have been surpressed),
and the operators

a ≡ 1√
2

{
y + iq

}
; a+ ≡ 1√

2

{
y − iq

}
(14.2)

are not self-adjoint, and therefore do not represent “observables:” they are
the familiar step-down/up “ladder operators,” which were first introduced into
oscillator theory by Dirac,18 were generalized by Schrödinger in ,19 and are
encountered today in most elementary texts.20

From
[
x1, p1

]
=

[
x2, p2

]
= 1 (all other commutators constructable from

x1, p1, x2 and p2 vanish) obtain

[
y , q

]
= �

–1
[
x , p

]
= i I :

{ identical subscripts surpressed,
other commutators vanish

whence

[
a+

1 , a1

]
=

[
a+

2 , a2

]
= − I : all other a -commutators vanish

of which [
a+

r , as

]
= − δrs I (15)

provides a useful summary.

Construct (simply as a notational device) vectors with operator-valued
elements

aaa ≡
(

a1

a2

)
and aaat ≡ ( a+

1 a+
2 ) (16)

18 Principles of Quantum Mechanics (2nd edition ), §34.
19 See L. Infeld & T. E. Hull, “The factorization method,” Rev. Mod. Phys.

23, 21 (1951) for additional references and indication of what became of Dirac’s
pretty idea. For its more recent adventures, see Chapter I in Christopher Lee’s
thesis, “Supersymmetric Quantum Mechanics” (Reed College, ).

20 See, for example, David Griffiths’ Introduction to Quantum Mechanics
(), §2.3.1.
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and from them construct the dimensionless hermitian operators (observables)

Qµ ≡ aaatσσµaaa : µ = 0, 1, 2, 3 (17)

Explicitly
Q0 = a+

1 a1 + a+
2 a2

Q1 = a+
1 a2 + a+

2 a1

Q2 = −i(a+
1 a2 − a+

2 a1)
Q3 = a+

1 a1 − a+
2 a2




(18)

The quantum analog of the pretty identity (7) reads21

[
aaat

Maaa, aaat
Naaa

]
= aaat[

M, N
]
aaa (19)

where M and N are any 2×2 matrices with number-valued elements. Therefore[
Q0, Q1

]
=

[
Q0, Q2

]
=

[
Q0, Q3

]
= 0 (20.1)

[
Q1, Q2

]
= 2iQ3[

Q2, Q3

]
= 2iQ1[

Q3, Q1

]
= 2iQ2


 (20.2)

The associated observables

Jk ≡ �

2 Qk : k = 1, 2, 3 (21)

possess the physical dimension of—and the commutation properties[
J1, J2

]
= i�J3[

J2, J3

]
= i�J1[

J3, J1

]
= i�J2


 (22)

quantum mechanically characteristic of—angular momentum. The “accidental”
intrusion of O(3) into the dynamics of a centrally-symmetric 2-dimensional
system is, of course, no less surprising when encountered in quantum theory
than it was when encountered in the classical oscillator theory.

Working from (18) with the aid of (15) we find

Q2
1 + Q2

2 + Q2
3 = Q2

0 + 2Q0 (23)

where the second term on the right, which has no counterpart in (12), is an
artifact of non-commutativity; in J -language the preceding equation becomes

J2 ≡ J2
1 + J2

2 + J2
3 = J2

0 + �J0 (24)

21 The short argument: use i�
[
a∗, a

]
= −1 �−→

[
a+, a

]
= − I .
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where the second term on the right vanishes in the classical limit � ↓ 0. It
follows now from (20.1) that[

J2, J1

]
=

[
J2, J2

]
=

[
J2, J3

]
= 0 (25)

Equations (22) and (25) are familiar from the quantum theory of angular
momentum, though they pertain here to the theory of 2-dimensional isotropic
oscillators. Quoting now from McIntosh:16

Perhaps one of the most interesting aspects of the theory of the
two-dimensional harmonic oscillator has been the use made of
it by Schwinger to develop the theory of angular momentum,10

by exploiting the appearance of the three-dimensional rotation
group as the symmetry group of the plane isotropic harmonic
oscillator. In Schwinger’s paper the language is that of second-
quantized field theory, and of course no connection is made
with the theory of accidental degeneracy. Nevertheless the two
theories are intimately related, and a very far-reaching theory
of angular momentum may be created by the use of. . . properties
of the harmonic oscillator.

At this point in angular momentum theory it is standard to introduce (as
computational aids) non-hermitian operators

J+ ≡ J1 + iJ2 = � a+
1 a2

J− ≡ J1 − iJ2 = � a+
2 a1

}
(26)

and to observe that22 [
J2, J+

]
=

[
J2, J−

]
= 0 (27)[

J3, J+

]
= +�J+[

J3, J−

]
= −�J−

}
(28)

It is from (28) that (a few steps down the road) J+ and J− acquire significance
as “step-up/down operators” (in Griffiths’ terminology: “raising and lowering
operators”). Notice, however, that at (26) those operators are presented now in
a “factored” form not standard to textbook treatments of angular momentum.

Bosonic populations of 2-state systems. Introduce “indistinguishability” into
the quantum theory of many-particle systems. The resulting “quantum field
theory” comes in two flavors, according as the particles are

bosons : Ψ(xxx1, xxx2, . . . , xxxn) is totally symmetric
fermions : Ψ(xxx1, xxx2, . . . , xxxn) is totally antisymmetric

22 Compare Griffiths’ §4.3.1,20 and notice how relatively simple is the present
line of argument (the details of which I have omitted). That simplicity traces
to our ability to “factor” J+ and J−, which we acquired at the =’s in (26).
This remark exposes the algebraic secret of Schwinger’s success, the force of
McIntosh’s observation.
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It is assured in either case that Ψ∗Ψ is permutationally invariant. In both cases
one encounters populations of “annihilation operators” ar and of associated
“creation operators” a+

s which are found satisfy

ar a+
s − a+

s ar = δrs I : bosonic case (29.1)
ar a+

s + a+
s ar = δrs I : fermionic case (29.2)

I digress to review the origin of those statements in order to emphasize that,
while (29.1) is formally identical to (15), it has an entirely different meaning .

Let S be a quantum system, and write S
n ≡ S1×S2×· · ·×Sn to signify

the composite system constructed from n individually labled copies of S. The
question before us—How to describe the state of S

n?—is “pre-dynamical;” we
have, therefore, no immediate interest in the Hamiltonian that impells motion
with S, or in the distinction between “mental” composites and “physically
interactive” composites.

Let us assume S to be an N -state system. It is this assumption that
separates the following material from more standard accounts23 of our subject.
The state space of S has, by force of this assumption, become an N -dimensional
complex vector space V. As an expository convenience I will set N = 3, though
in the end we will have special interest in the case N = 2; to describe the state
of S we write

|ψ) = ψ1|1) + ψ2|2) + ψ3|3) =


 ψ1

ψ2

ψ3


 (30.1)

where

|1) ≡


 1

0
0


 , |2) ≡


 0

1
0


 , |3) ≡


 0

0
1


 (30.2)

refer to some orthonormal basis in V.

Look not to the simplest composite system, S
2 ≡ S1 × S2. If S1 is in

state |α) and S2 is in state |β), then to describe the state of S
2 we construct

|ψ) ≡ |α) ⊗ |β) =




α1β1

α1β2

α1β3

α2β1

α2β2

α2β3

α3β1

α3β2

α3β3




=
∑
r,s

αrβs|r, s) with |r, s) ≡ |r) ⊗ |s)

23 See, for example, Chapter 6 in S. S. Schweber, Introduction to Relativistic
Quantum Field Theory ().
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where ⊗ signifies the Kronecker (also called the outer/direct/tensor) product.
Notice that (ψ|ψ) = (α|α) · (β|β) = 1; i.e., that the |r, s) comprise an “induced
orthonormal basis” in the N2 = 32 = 9-dimensional statespace V2 of S

2. And
that the extension of this procedure to S

n>2 is straightforward.

If, however, the systems are indistinguishable, then we have to
• achieve αβ -symmetrization in the bosonic case;
• achieve αβ -antisymmetrization in the fermionic case

which are easily accomplished. Look first to the bosonic case. Construct

|ψ)bosonic ≡
|α) ⊗ |β) + |β) ⊗ |α)
normalization factor

∼




2α1β1

α1β2 + β1α2

α1β3 + β1α3

α2β1 + β2α1

2α2β2

α2β3 + β2α3

α3β1 + β3α1

α3β2 + β3α2

2α3β3




=




type 1
type 2
type 3
type 2
type 4
type 5
type 3
type 5
type 6




and notice that the 9-vector contains terms of only 6 types. This is because
only six of the objects

|r) ⊗ |s) + |s) ⊗ |r) : r, s = 1, 2, 3

are distinct. They are

|2, 0, 0) ≡ 1
2

{
|1) ⊗ |1) + |1) ⊗ |1)

}
|1, 1, 0) ≡ 1√

2

{
|1) ⊗ |2) + |1) ⊗ |2)

}
|1, 0, 1) ≡ 1√

2

{
|1) ⊗ |3) + |1) ⊗ |3)

}
|0, 2, 0) ≡ 1

2

{
|2) ⊗ |2) + |2) ⊗ |2)

}
|0, 1, 1) ≡ 1√

2

{
|2) ⊗ |3) + |3) ⊗ |2)

}
|0, 0, 2) ≡ 1

2

{
|3) ⊗ |3) + |3) ⊗ |3)

}




(31.1)

of which I give now explicit descriptions:

|2, 0, 0) =




1
0
0
0
0
0
0
0
0




, |1, 1, 0) = 1√
2




0
1
0
1
0
0
0
0
0




, |1, 0, 1) = 1√
2




0
0
1
0
0
0
1
0
0






12 Schwinger’s “On Angular Momentum”

|0, 2, 0) =




0
0
0
0
1
0
0
0
0




, |0, 1, 1) = 1√
2




0
0
0
0
0
1
0
1
0




, |0, 0, 2) =




0
0
0
0
0
0
0
0
1




These vectors are readily seen to be orthonormal. They span a 6-dimensional
subspace

V2
bosons ≡ (V ⊗ V)sym ∈ V ⊗ V

in (32 = 9)-dimensional vector space V ⊗ V.

In the fermionic case the situation is similar but simpler: we have

|ψ)fermionic ≡
|α) ⊗ |β) − |β) ⊗ |α)
normalization factor

∼




0
α1β2 − β1α2

α1β3 − β1α3

α2β1 − β2α1

0
α2β3 − β2α3

α3β1 − β3α1

α3β2 − β3α2

0




=




0
+type 3
+type 2
−type 3

0
+type 1
−type 2
−type 1

0




There are now only 3 term types because only three of the objects

|r) ⊗ |s) − |s) ⊗ |r) : r, s = 1, 2, 3

are distinct. They are

|1, 1, 0) ≡ 1√
2

{
|1) ⊗ |2) − |2) ⊗ |1)

}
|1, 0, 1) ≡ 1√

2

{
|1) ⊗ |3) − |3) ⊗ |1)

}
|0, 1, 1) ≡ 1√

2

{
|2) ⊗ |3) + |3) ⊗ |2)

}

 (31.2)

Explicitly

|1, 1, 0) = 1√
2




0
+1
0
−1
0
0
0
0
0




, |0, 1, 1) = 1√
2




0
0

+1
0
0
0
−1
0
0




, |0, 1, 1) = 1√
2




0
0
0
0
0

+1
0
−1
0
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These manifestly orthonormal vectors span a 3-dimensional subspace

V2
fermions ≡ (V ⊗ V)antisym ∈ V ⊗ V

Bosons and fermions are seldom discussed in the same breath, so the fact that

|1, 1, 0)boson �= |1, 1, 0)fermion

should be noted, but is seldom a source of notational confusion.

To describe the state of S
2
bosonic ≡ S � S we are in position now to write

|ψ) = ψ2,0,0|2, 0, 0) + ψ1,1,0|1, 1, 0) + ψ1,0,1|1, 0, 1)
+ ψ0,2,0|0, 2, 0) + ψ0,1,1|0, 1, 1) + ψ0,0,2|0, 0, 2)

=
∑

n1,n2,n3

ψn1,n2,n3 |n1, n2, n3) (32.2)

n1+n2+n3=2

while the state of S
2
fermionic ≡ S � S becomes

|ψ) = ψ1,1,0|1, 1, 0) + ψ1,0,1|1, 0, 1) + ψ0,1,1|0, 1, 1)

The systems S
3
bosonic ≡ S � S � S and S

3
fermionic ≡ S � S � S lead to this

variant of (32)

|ψ) =
∑

n1,n2,n3

ψn1,n2,n3 |n1, n2, n3) (32.3)

n1+n2+n3=3

So it goes. . . the extension to S
n being (apart from a combinatorial problem to

which I return in a moment) entirely straightforward. So, in fact, it was in the
beginning, since (30) can be written

|ψ) =
∑

n1,n2,n3

ψn1,n2,n3 |n1, n2, n3) (32.1)

n1+n2+n3=1

with
|1, 0, 0) ≡ |1)
|0, 1, 0) ≡ |2)
|0, 0, 1) ≡ |3)

The integers
{
n1, n2, n3

}
are called “occupation numbers,” and equations (32)

display |ψ) in the “occupation number representation.” It is futile to attempt to
state which of the indistinguishable systems S are in the rth state, but remains
meaningful to state how many are, which is precisely what nr does. For bosonic
systems nr can assume any value � n (if the composite system is S

n), but for
fermionic systems nr ∈

{
0, 1

}
(by implication of the antisymmetry condition).
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At cost of some repetition, I turn now to a summary of results which will
serve as our launch pad for developments that soon follow. All computation
was performed by Mathematica ; details can be found in a detached appendix .

some details pertaining to bosonic 3-state systems

The state space V1
bosonic ≡ V of S

1
bosonic is 3-dimensional, and is spanned by

(1, 0, 0| ≡ ( 1 0 0 )
(0, 1, 0| ≡ ( 0 1 0 )
(0, 0, 1| ≡ ( 0 0 1 )

The state space V2
bosonic ≡ (V ⊗ V)sym of S

2
bosonic is 6-dimensional, and is

spanned by
(2, 0, 0| = 1√

4
( 2 0 0 0 0 0 0 0 0 )

(1, 1, 0| = 1√
2

( 0 1 0 1 0 0 0 0 0 )

(1, 0, 1| = 1√
2

( 0 0 1 0 0 0 1 0 0 )

(0, 2, 0| = 1√
4

( 0 0 0 0 2 0 0 0 0 )

(0, 1, 1| = 1√
2

( 0 0 0 0 0 1 0 1 0 )

(0, 0, 2| = 1√
4

( 0 0 0 0 0 0 0 0 2 )

The state space V3
bosonic ≡ (V⊗V⊗V)sym of S

3
bosonic is 10-dimensional, and is

spanned by

(3, 0, 0| = 1√
36

( 6 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )

(2, 1, 0| = 1√
12

( 0 2 0 2 0 0 0 0 0 2 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )

(2, 0, 1| = 1√
12

( 0 0 2 0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 )

(1, 2, 0| = 1√
12

( 0 0 0 0 2 0 0 0 0 0 2 0
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 )

(1, 1, 1| = 1√
6

( 0 0 0 0 0 1 0 1 0 0 0 1
0 0 0 1 0 0 0 1 0 1 0 0 0 0 0 )

(1, 0, 2| = 1√
12

( 0 0 0 0 0 0 0 0 2 0 0 0
0 0 0 0 0 0 0 0 2 0 0 0 2 0 0 )

(0, 3, 0| = 1√
36

( 0 0 0 0 0 0 0 0 0 0 0 0
0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 )

(0, 2, 1| = 1√
12

( 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 2 0 0 0 0 0 2 0 0 0 0 )

(0, 1, 2| = 1√
12

( 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 2 0 0 0 0 0 2 0 2 0 )

(0, 0, 3| = 1√
36

( 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 )
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Generally,

[N, n ]bosonic ≡ dimension of Vn
bosonic N-state

= number of terms in (x1 + x2 + · · · + xN)n

=
{

number of “words” ∗ ∗ | ∗ || ∗ · · · ∗ |∗
constructable from n ∗’s and (N − 1) |’s

=
(N + n − 1)!
(N − 1)! n!

which the following (symmetric) table serves to illustrate:

1 2 3 4 5 6 7 · · ·

2 2 3 4 5 6 7 8
3 3 6 10 15 21 28 36
4 4 10 20 35 56 84 120
5 5 15 35 70 126 210 330
6 6 21 56 126 252 462 792
7 7 28 84 210 462 924 1716
8 8 36 120 330 792 1716 3432
...

TABLE 1: The number n at the top of each column indicates how
many copies of S make up the bosonic population. The number
N at the left of each row indicates how many linearly independent
states each S is assumed to possess. The values of [N, n ]bosonic

are tabulated. The red entries are detailed on the preceding page.
Notice that the data in a row reappears as differences in the next
row: [N, n ]bosonic − [N, n − 1]bosonic = [N − 1, n ]bosonic.

some details pertaining to fermionic 3-state systems

The state space V1
fermionic ≡ V of S

1
fermionic is 3-dimensional, and is spanned by

(1, 0, 0| ≡ ( 1 0 0 )
(0, 1, 0| ≡ ( 0 1 0 )
(0, 0, 1| ≡ ( 0 0 1 )

NOTE: There might appear to be no way for a solitary system to declare
whether it is latently bosonic or fermionic. . .but—surprisingly—in contexts to
which the “spin-statistics theorem” pertains it does make sense to speak of
(say) a solitary fermion.
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The state space V2
fermionic ≡ (V ⊗ V)antisym of S

2
fermionic is 3-dimensional, and

is spanned by

(1, 1, 0| = 1√
2

( 0 p 0 q 0 0 0 0 0 )

(1, 0, 1| = 1√
2

( 0 0 p 0 0 0 q 0 0 ) : p = +1, q = −1

(0, 1, 1| = 1√
2

( 0 0 0 0 0 p 0 q 0 )

The state space V3
fermionic ≡ (V ⊗ V ⊗ V)antisym of S

2
fermionic is 1-dimensional,

and its solitary element is

(1, 1, 1| = 1√
6
( 0 0 0 0 0 p 0 q 0 0 0 q
0 0 0 p 0 0 0 p 0 q 0 0 0 0 0 )

The state spaces Vn>3
fermionic of S

n>3
fermionic are empty. Generally

[N, n ]fermionic ≡ dimension of Vn
fermionic N-state

=




number of “words” ∗ ∗ | ∗ || ∗ · · · ∗ |∗
constructable from n ∗’s and (N − 1) |’s
if adjacent ∗’s are disallowed

=




(
N
n

)
if n = 1, 2, . . . , N

0 if n > N

as illustrated below:

1 2 3 4 5 6 7 · · ·

2 2 1 0 0 0 0 0
3 3 3 1 0 0 0 0
4 4 6 4 1 0 0 0
5 5 10 10 5 1 0 0
6 6 15 20 15 6 1 0
7 7 21 35 35 21 7 1
8 8 28 56 70 56 28 8
...

TABLE 2: Fermionic companion of TABLE 1 The values of
[N, n ]fermionic are tabulated. Entries in a row are related now by
“Pascal’s principle” to entries in the preceding row. The zeros
reflect the fact that it is impossible to construct a fermionic
composite containing more than N copies of an N -state system.

It is by now clear that algebra appropriate to the fermionic composition
of N -state systems comes to us ready-made: is precisely the exterior algebra,24

which provides precursors also of some of the ideas to which we will turn after

24 For an account of this subject, see Chapter 2 in H. Flanders, Differential
Forms, with Applications to the Physical Sciences ().
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we have clarified one dangling detail:

On recent pages I have provided explicit descriptions of vectors (n1, n2, n3|
with n ≡ n1 +n2 +n3 = 1 else 2 else 3 in both the bosonic and fermionic cases.
Normalization factors 1√

etc.
were introduced “by hand;” orthogonality could

be verified by similarly direct means. We need to be in position to establish
orthonormality in general , and to that end must acquire some apparatus.
Reading from the list of Kronecker product properties presented at (63) in
Chapter 1 of Advanced Quantum Topics (), we have25

(A ⊗ B)T = AT ⊗ BT (33.1)

(A ⊗ B)(C ⊗ D) = AC ⊗ BD if




A is m × p
B is n × q
C is p × u
D is q × v

(33.2)

Suppose, in particular, that aaa and ccc are p -vectors and that bbb and ddd are q -vectors.
Then uuu ≡ aaa ⊗ bbb and vvv ≡ ccc ⊗ ddd are pq-vectors, and their inner product

uuuTvvv = (aaa ⊗ bbb)T(ccc ⊗ ddd )

= (aaaT⊗ bbbT)(ccc ⊗ ddd )

= aaaTccc · bbbTddd

It follows by extension that if
{
fff1, fff2, . . . , fffn

}
is an n -tuple of N -vectors, and

if
{
ggg1, ggg2, . . . , gggn

}
is another, then

(fff1⊗ fff2⊗ . . . ⊗ fffn)T(ggg1⊗ ggg2⊗ . . . ⊗ gggn)
= (fff1

Tggg1) · (fff2
Tggg2) · · · (fffn

Tgggn)
(34)

Suppose every fff and every ggg has been associated with one or another of the
elements of an orthonormal set

{
eee1, eee2, . . . , eeeN

}
of N -vectors; then

=
{

1 if fff1 = ggg1, fff2 = ggg2, etc.
0 otherwise

(35)

Reinstate (in the interest of notational simplicity) the assumption that N = 3.
Define

EEE ≡ eee1 ⊗ · · · ⊗ eee1︸ ︷︷ ︸⊗ eee2 ⊗ · · · ⊗ eee2︸ ︷︷ ︸⊗ eee3 ⊗ · · · ⊗ eee3︸ ︷︷ ︸
n1 factors n2 factors n3 factors

25 The second of the following identities is actually a vast generalization of
the identity quoted, which arises in the case m = p = u, n = q = v. My
assertion is that the identity holds whenever all the matrix products make sense.
In “Kronecker products with Mathematica” (October ) I indicate how
Mathematica can be used to generate evidence in support of that assertion.
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which is a 3n -vector with n = n1 + n2 + n3; it is by convention that the factors
have been placed in dictionary order.

Symmetrize; i.e., construct the sum-over-permutations

SSSn1,n2,n3
≡

∑
℘

eee1 ⊗ · · · ⊗ eee1 ⊗ eee2 ⊗ · · · ⊗ eee2 ⊗ eee3 ⊗ · · · ⊗ eee3

=
{

n! -fold sum of 3n -vectors, in which
each term appears n1!n2!n3! times

(36)

From (35) obtain
SSS TSSS = (n1 + n2 + n3)! · n1!n2!n3! (37)

and this more sweeping statement:

SSS T
m1,m2,m3

SSSn1,n2,n3
=

{
(n1 + n2 + n3)! · n1!n2!n3!

}
· δm1n1

δm2n2
δm3n3

Make the notational adjustments eee1 �→ |1), eee2 �→ |2), eee3 �→ |3) and discover that
we have reproduced all previous bosonic normalization factors and orthogonality
relations. Alternatively. . .

Antisymmetrize; i.e., construct the sum-over-signed -permutations26

AAAn1,n2,n3
≡

∑
℘

(−)℘eee1 ⊗ · · · ⊗ eee1 ⊗ eee2 ⊗ · · · ⊗ eee2 ⊗ eee3 ⊗ · · · ⊗ eee3

=
{

n! -fold sum of 3n -vectors if n1!n2!n3! = 1
000 otherwise

(38)

From (34) obtain
AAA TAAA = (n1 + n2 + n3)! (39)

and discover that we have reproduced all previous fermionic normalization
factors and orthogonality relations. Notice that

(n1 + n2 + n3)! = (n1 + n2 + n3)! n1!n2!n3! by 0! = 1! = 1

so the bosonic and fermionic normalization factors are formally identical .

We come at last to the point of these preparatory remarks:

bosonic creation & annihilation operators

Let b1 denote an operator designed to achieve symmetrized admixture of an eee1,
and let b2, b3, . . .be defined similarly. Evidently

b1|n1, n2, n3) ∼ |n1 + 1, n2, n3)

26 One might reasonably call these “determinantal” or “exterior” sums.



Background: Bosonic populations of 2-state systems 19

We will in fact adopt equations of the form

b1|n1, n2, n3) =
√

n1 + 1 · |n1 + 1, n2, n3) (40.1)

which by

acts to the right—↓ ↓—acts to the left

(m1, m2, m3|b1|n1, n2, n3) ≡ (m1, m2, m3|bt
1 |n1, n2, n3)

entail
bt
1 |n1, n2, n3) =

√
n1 · |n1 − 1, n2, n3) (40.2)

and serve perfectly well to define b1 and bt
1 , but might seem unmotivated. The

following remarks are intended to remove that defect:

The normalized 3n-vector |n1, n2, n3) is presented to us as a sum of n!
terms:

|n1, n2, n3) =
1√

n1! n2! n3!

∑
℘

eeei1⊗ eeei2⊗ · · · ⊗ eeein√
n!

“Symmetrized admixture of an eee” turns each term into (n + 1) terms, by the
following mechanism:

eeei ⊗ eeej ⊗ eeek

↓
eee ⊗ eeei ⊗ eeej ⊗ eeek + eeei ⊗ eee ⊗ eeej ⊗ eeek + eeei ⊗ eeej ⊗ eee ⊗ eeek + eeei ⊗ eeej ⊗ eeek ⊗ eee︸ ︷︷ ︸

“symmetrized admixture,” denoted eee � eeei ⊗ eeej ⊗ eeek

It becomes in this light natural to define

b1|n1, n2, n3) ≡
1√

n + 1
· eee1 � |n1, n2, n3)

=
1√

n1! n2! n3!

∑
℘

eee1� eeei1⊗ eeei2⊗ · · · ⊗ eeein√
n + 1

√
n!

=
√

n1 + 1 · 1√
(n1 + 1)! n2! n3!

∑
℘

eee1� eeei1⊗ eeei2⊗ · · · ⊗ eeein√
n + 1

√
n!︸ ︷︷ ︸

|n1 + 1, n2, n3)

which brings us back to (40.1). One curious detail: normally we might expect
to define

symmetrization =
sum of permuted terms

number of terms
but have here adopted a convention

state vector symmetrization =
sum of permuted terms√

number of terms
which is justified on grounds that it leads to the most natural expression of the
theory, but might be understood as a reflection of the circumstance that state
vectors enter quadratically into the construction of expectation values.
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Look next to the synthesis of bt
1. We begin by isolating an implication of

(33). Assume as before that ccc is a p -vector, bbb and ddd are q -vectors. Then ccc ⊗ ddd
is a pq-vector. Let

Ip ≡ the p × p identity matrix

Then Ip ⊗ bbb is a pq × p matrix, its transpose is p × pq and by (33) we have

( Ip ⊗ bbb)T(ccc ⊗ ddd ) = ( Ip ⊗ bbbT)(ccc ⊗ ddd )
= ccc · (bbbTddd ) (41)

The rectangular matrix ( Ip ⊗ bbb)T has successfully “devoured” the second of the
factors in the Kronecker product ccc ⊗ ddd ; we might reasonably call this process
“Kronecker division.”27 To see the process in action, look at

( I9⊗ eee1)
T(eeei ⊗ eeej ⊗ eeek) = (eeei ⊗ eeej) · (eee1

Teeek) =
{

eeei ⊗ eeej if k = 1
000 otherwise

Or look at the following (in which we retain the 3-state assumption):

bt
1 |n1, n2, n3) ≡

√
n(I3n−1 ⊗ eee1)

T · 1√
n1! n2! n3!

∑
℘

eeei1⊗ eeei2⊗ · · · ⊗ eeein√
n!

Notice that the n! terms presented by
∑

℘ eeei1⊗ eeei2⊗ · · · ⊗ eeein
can be grouped

∑
℘

eeei1⊗ eeei2⊗ · · · ⊗ eeein
= sum of terms with no terminal eee1 : n1 = 0

= such stuff +
{∑

℘

eeei1⊗ eeei2⊗ · · · ⊗ eeei n−1

}
⊗ eee1 : n1 = 1

= such stuff + 2
{∑

℘

eeei1⊗ eeei2⊗ · · · ⊗ eeei n−1

}
⊗ eee1 : n1 = 2

...

so by (41) we have

bt
1 |n1, n2, n3) =

√
n

{
1√

n1! n2! n3!
n1

∑
℘

eeei1⊗ eeei2⊗ · · · ⊗ eeei n−1√
n!

}

(an eee1 has been removed from the eee population, and “stuff” has been killed)

=
√

n1

{
1√

(n1 − 1)! n2! n3!

∑
℘

eeei1⊗ eeei2⊗ · · · ⊗ eeei n−1√
(n − 1)!

}

and have recovered (40.2).

27 This happy idea occurred to me while I stood bedrizzled in the parking lot
of Tualatin Valley Builders Supply, where I had gone to get materials to repair
my garage door, and took much of the pain out of that experience.
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fermionic creation & annihilation operators

The general pattern of the argument runs as in the bosonic case, but to make
theorems possible we must establish a sign convention, and to prove them we
must accept the tedium of some careful sign juggling.28 Agree at the outset to
abandon our former 3-state assumption N = 3 (which proves now too restrictive
to serve expositor clarity), and fix in mind the facts that in the fermionic case
• all n’s are 0 or 1 (so |n1, n2, . . . , nN) looks in every case rather like a binary

number);
• the subscripts in eeei1

⊗ eeei2
⊗ · · · ⊗ eeei n

are always distinct.
Adopt the

convention: The term eeei1
⊗ eeei2

⊗ · · · ⊗ eeei n
with

i1 < i2 < · · · < in : dictionary order

enters positively into the design of |n1, , n2, . . . , nN).

The normalized Nn-vector |n1, n2, . . . , nN) is presented to us as a sum of
n! terms:

|n1, n2, . . . , nN) =
∑

℘

(−)℘ eeei1⊗ eeei2⊗ · · · ⊗ eeein√
n!

“Antisymmetrized admixture of an eee” turns each term into (n + 1) terms, by
the following mechanism:

eeei ⊗ eeej ⊗ eeek

↓
eee ⊗ eeei ⊗ eeej ⊗ eeek − eeei ⊗ eee ⊗ eeej ⊗ eeek + eeei ⊗ eeej ⊗ eee ⊗ eeek − eeei ⊗ eeej ⊗ eeek ⊗ eee︸ ︷︷ ︸

“antisymmetrized admixture,” denoted eee ©A eeei ⊗ eeej ⊗ eeek

It becomes in this light natural to define

bj |n1, n2, . . . , nN) ≡ 1√
n + 1

· eeej ©A |n1, n2, n3)

=




000 if k present in the ordered i-list∑
℘

(−)℘ eeej ©A eeei1⊗ eeei2⊗ · · · ⊗ eeei n√
n + 1

√
n!

if k absent

=




000

(−)s
∑

℘

(−)℘
eeei1⊗ · · · ⊗ eeeis

⊗ eeej ⊗ eeek1⊗ · · · ⊗ eeek n−s√
(n + 1)!

according as nj = 1 or nj = 0. Here we have moved eeej to its canonical place

all i’s < j < all k’s

28 An identical tedium bedevils the exterior calculus.
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and
s ≡ sj ≡ number of eeei that conventionally stand left of eeej

=
∑
i<j

ni

So we have

bj |n1, n2, . . . , nj , . . . , nN) (42.1)

= (−)sj (1 − nj) · |n1, n2, . . . , nj + 1, . . . , nN)

where we have installed

1 − nj =
{

0 if nj = 1
1 if nj = 0

as a nifty “switch” to distinguish one case from the other.29 We are in possession
now of apparatus sufficient to produce a “constructive” account of bt

j , but I
won’t: we have actual need only of a statement

bt
j |n1, n2, . . . , nj , . . . , nN) (42.2)

= (−)sj nj · |n1, n2, . . . , nj − 1, . . . , nN)

that follows already from (42.1) by the meaning of the adjoint.

I have found it easier, from a constructive standpoint, to discuss the birth
of an eee-factor than its demise, and have elected to assign the simpler name to
the simpler object. But now that all the work is behind us, we can revert

b j �−→ at
j : creation operators

bt
j �−→ a j : annihilation operators

to the notation which has long been standard. We have

at
j |n1, n2, . . . , nj , . . . , nN) (43.11)

=
√

nj + 1 · |n1, n2, . . . , nj + 1, . . . , nN)
aj |n1, n2, . . . , nj , . . . , nN) (43.12)

=
√

nj · |n1, n2, . . . , nj − 1, . . . , nN)

at
j |n1, n2, . . . , nj , . . . , nN) (43.21)

= (−)sj (1 − nj) · |n1, n2, . . . , nj + 1, . . . , nN)
aj |n1, n2, . . . , nj , . . . , nN) (43.22)

= (−)sj ( nj ) · |n1, n2, . . . , nj − 1, . . . , nN)

29 The complementary switch—needed in a moment—is even simpler:

nk =
{

1 if nk = 1
0 if nk = 0
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in the bosonic/fermionic cases, respectively. In the former (bosonic) case it is
evident that [

a i , a j

]
=

[
at

i , at
j

]
= 0 : all i, j (44.1)

and [
a i , at

j

]
= 0 : i �= j (44.2)

while from

a i a
t
i |n1, n2, . . . , ni , . . . , nN) = (ni + 1)|n1, n2, . . . , ni , . . . , nN)

at
i a i |n1, n2, . . . , ni , . . . , nN) = ( ni )|n1, n2, . . . , ni , . . . , nN)

we obtain [
a i , at

i

]
= I : all i (44.3)

But to develop fermionic analogs of those statements we must take into account
the sign factors, which have some curious consequences. Look first to a i a j |etc.)
on the assumption that i < j. In a i a j |etc.) we encounter (−)si+sj while the
a j in a j a i|etc.) sees an extra term, so presents (−)si+sj+1 = − (−)si+sj . This
upshot of this line of argument is that[

a i , a j

]
+

=
[
at

i , at
j

]
+

= 0 : all i, j (45.1)[
a i , at

j

]
+

= 0 : i �= j (45.2)

where the + signifies anticommutation:[
A , B

]
+
≡ A B + B A

It follows more simply from

a i a
t
i | . . . , ni , . . .) =

{
(−)2si | . . . , ni , . . .) if ni = 0
0 if ni = 1

at
i a i | . . . , ni , . . .) =

{
0 if ni = 0

(−)2si | . . . , ni , . . .) if ni = 1

and (−)2si = 1 (all cases) that[
a i , at

i

]
+

= I : all i (45.3)

It is clear from the preceding discussion that

a i acts on elements of Vn
N to yield elements of Vn−1

N

at
i acts on elements of Vn

N to yield elements of Vn+1
N

Which is to say: creation/annihilation operators have as their sphere of activity
not the state spaces of individual composite systems, but the formal union of
such spaces—a place called “Fock space”30

VFock ≡
{

V0
N ⊕ V1

N ⊕ · · · ⊕ VN

N ⊕ VN+1
N ⊕ · · · : bosonic case

V0
N ⊕ V1

N ⊕ · · · ⊕ VN

N : fermionic case

30 V. Fock, “Konfigurationsraum und zweite Quantelung,” Zeit. f. Physik
75, 622 (1932).
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which is
∞ -dimensional in the bosonic case, but only
2N -dimensional in the fermionic case.

Combinations of creation and annihilation operators, on the other hand, may
be meaningful on individual V’s: the so-called “number operators”

N i ≡ at
i a i

N i | . . . , ni , . . .) = ni | . . . , ni , . . .) : bosonic or fermionic

and the “total number operator”

N ≡
N∑

i=1

N i

provide (hermitian) examples. We note in passing that[
N , a i

]
=

[
N i , a i

]
= −a i[

N , at
i

]
=

[
N i , at

i

]
= +at

i

}
: bosonic case

[
N , a i

]
+

=
[
N i , a i

]
+

= +a i[
N , at

i

]
+

=
[
N i , at

i

]
+

= +at
i

}
: fermionic case

and that from
a i a i = at

i at
i = 0 : fermionic case

it follows quickly that the operators N i are projective:

N2
i = N i : fermionic case

. . .which is another way of saying what we already knew: the eigenvalues of N i

are, in teh latter case, 0’s else 1’s.

We come now to the profound development that (upon abandonment of our
characteristic finite-state assumption) earns for this subject the name “quantum
field theory,” that gives rise to the concept of “second quantization.” For the
purposes of this discussion we confine our explicit attention to bosons, and
reinstate our assumption that N = 3. Let H be a hermitian operator defined
on the state space V ≡ V1

3 of the solitary 3-state system S. To describe H
relative to a selected orthonormal basis, Dirac would write

H =
∑
i, j

|i)(i|H |j)(j| ≡
∑
i, j

Hij |i)(j|

When presented to |ψ) =
∑

k |k)(k|ψ) ≡
∑

k |k)ψk the operator Hij |i)(j| plucks
out the |j)-component and turns it into an |i)-component, to which it assigns
weight Hij . To express the same idea, we might write

|ψ) = |1, 0, 0)(1, 0, 0|ψ) + |0, 1, 0)(0, 1, 0|ψ) + |0, 0, 1)(0, 0, 1|ψ)

|i)(j| = at
j a i

H11 = (1, 0, 0|H |1, 0, 0), H12 = (1, 0, 0|H |0, 1, 0), etc.
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It becomes in this light natural to introduce

ΨΨΨ ≡ |1, 0, 0)a1 + |0, 1, 0)a2 + |0, 0, 1)a3 (46)

and to write

↓—was initially defined only on V1

H = ΨΨΨtHΨΨΨ (47)
↑
—has become meaningful on VFock

I will underscore the point just made by notational adjustment:

↓
HH = ΨΨΨtHΨΨΨ

In the ordinary quantum theory of S the expression (ψ|H |ψ) carries the
interpretation of a number-valued “expectation value.” But the right side of
(47) is operator -valued: it acts simultaneously on V1

3 , V2
3 , V3

3 , . . . ; it acts, in
short, on the elements

|ψ)Fock ∈ VFock

and provides accounts simultaneously of

quantum physics on S

quantum physics on S � S

quantum physics on S � S � S

...

We expect to have Fock(ψ|ψ)Fock = 1, but ΨΨΨtΨΨΨ is a different kind of beast: we
find

ΨΨΨtΨΨΨ =
∑

i

at
i a i =

∑
i

N i = N

It is clear by this point that we can abandon our initial “3-state bosons”
assumption.

The finite-state Schrödinger equation Hψψψ = i�∂tψψψ can—together with its
conjugate— be obtained from the classical (!) Lagrangian

L = ψψψt(i�ψψψt − Hψψψ)

on the strength of which we are led to define31

πππ ≡ ∂L

∂ψψψt

= i�ψψψt : “conjugate momentum”

31 Note that the gauge-equivalent Lagrangian L = 1
2 i�(ψψψtψψψt −ψψψt

tψψψ)−ψψψt
Hψψψ

leads to different results.
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Imitating that result, we define

ΠΠΠ ≡ i�ΨΨΨt

and obtain

bosonic case :
[
ΨΨΨ,ΠΠΠ

]
= i�

∑
k

[
ak , at

k

]
fermionic case :

[
ΨΨΨ,ΠΠΠ

]
+

= i�
∑

k

[
ak , at

k

]
+


 = i� · (number N of states)

In field theory the “number of states” (degrees of freedom) becomes infinite,
and one is led (in the non-relativistic theory) to statements of the form

[
ΨΨΨ(xxx),ΠΠΠ(yyy)

]
± = i�δ(xxx − yyy)

“Quantum field theory” is the name given to the quantum theory of
indefinitely many indistinguishable bosonic/fermionic subsystems (usually
understood to be “particles”), and can be considered to arise by formal “second
quantization” of the ψ-field that serves to describe the state of a solitary
subsystem. But having illustrated the grounds for such a statement, I abandon
the topic. . . in order to return to my motivating problem; i.e., to the clarification
of Schwinger’s point of departure:

Look now to a bosonic population of 2-state systems. Such systems are
commonly called “spin systems,” and (since spin 1

2 is known to imply fermionic
physics) the notion of a “bosonic population of spins” might appear to be
physically absurd; it poses, however, no formal problem for the theory sketched
in recent pages. The theory presents creation/annihilation operators of only two
flavors: call them at

1 , a1, at
2 , a2. They satisfy commutation relations which

by (44) are identical to those supplied at (15) by the isotropic oscillator—
operators which we used in (18)–(28) to establish contact with the quantum
theory of angular momentum.

So we have now in hand two distinct quartets of operators

{
at

1, a1, at
2, a2

}
: refer to an isotropic oscillator{

at
1, a1, at

2, a2

}
: refer to a bosonic population of spin 1

2 systems

which, though algebraically identical (and therefore equally able to support
formal imitations of the quantum theory of angular momentum), have physically
quite different meanings—not least because they operate upon entirely different
kinds of objects.

All of which was understood—taken for granted—by Schwinger before he
wrote a line of “On angular momentum.”
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elements of schwinger’s argument

Raw materials. I collect together, for hand reference, the algebraic material now
at our disposal as we—following in the footsteps of Schwinger32—undertake to
reproduce (i.e., to construct a theory formally identical to) the quantum theory
of angular momentum. I highlight statements that are available to Schwinger
but not available to authors who pursue the standard algebraic line of argument.

[
a1, at

1

]
=

[
a2, at

2

]
= I : all other a -commutators vanish (48.1)

N1 ≡ at
1 a1

N2 ≡ at
2 a2

}
(48.2)

N ≡ N1 + N2

M ≡ N1 − N2

}
(48.3)

J0 = �

2 (at
1 a1 + at

2 a2) = �

2 N

J1 = �

2 (at
1 a2 + at

2 a1)

J2 = −i�

2 (at
1 a2 − at

2 a1)

J3 = �

2 (at
1 a1 − at

2 a2) = �

2 M




(48.4)

[
J0, J1

]
=

[
J0, J2

]
=

[
J0, J3

]
= 0 (48.5)[

J1, J2

]
= i�J3[

J2, J3

]
= i�J1[

J3, J1

]
= i�J2


 (48.6)

J2 ≡ J2
1 + J2

2 + J2
3 = J2

0 + �J0

= �2
{

1
4 N2 + 1

2 N
} (48.7)

[
J2, J1

]
=

[
J2, J2

]
=

[
J2, J3

]
= 0 (48.8)

J+ ≡ J1 + iJ2 = � at
1 a2

J− ≡ J1 − iJ2 = � at
2 a1

}
(48.9)

[
J2, J+

]
=

[
J2, J−

]
= 0 (48.10)[

J3, J+

]
= +�J+[

J3, J−

]
= −�J−

}
(48.11)

32 See again (page 3) Schwinger’s abstract, where he promises only to
“derive many known theorems” and to obtain “some new results.”
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Construction & properties of eigenstates. One takes (48.8) as a license to search
for simultaneous eigenfunctions of J2 and J3, which Schwinger interprets to be
a search for simultaneous eigenfunctions of N and M .33

Let us agree to write |0) with these alternative intentions:

|0) ≡
{

ground state in the oscillator realization of the algebra
vacuum state in the bosonic spin field realization

In either realization we have

|n1, n2) =
1√

n1! n2!
(at

1)
n1 (at

2)
n2 |0) (49)

and
N1|n1, n2) = n1|n1, n2)
N2|n1, n2) = n2|n1, n2)

}
(50)

Immediately
N |n1, n2) = (n1 + n2) |n1, n2)
M |n1, n2) = (n1 − n2) |n1, n2)

which give

J2 |n1, n2) = �2
{

1
4 N2 + 1

2 N
}
|n1, n2)

= �2j(j + 1)|n1, n2) (51.11)

j ≡ 1
2 (n1 + n2) (51.12)

J3|n1, n2) = �

2 M |n1, n2)
= �m |n1, n2) (51.21)

m ≡ 1
2 (n1 − n2) (51.22)

From
n1 = j + m

n2 = j − m

}
(52)

we therefore have simultaneous eigenstates

|j, m〉 ≡ |j + m, j − m)

=
1√

(j + m)!(j − m)!
(at

1)
j+m (at

2)
j−m |0) (53)

In a footnote, Schwinger remarks that an expression of very nearly the same
design as appears on the right side of (53) can be found on page 189 of the
English translation () of H. Weyl’s The Theory of Groups and Quantum

33 Notice that[
N , M

]
=

[
N1 + N2 , N1 − N2

]
= 2

[
N2 , N1

]
= 2

[
at

2 a2, at
1 a1

]
= 0

by (48.1).
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Mechanics, but that it refers there to the transformation properties of the
eigenstates, while (53) refers to their explicit construction.

Reading from (43) we have

at
1 |n1 , n2) =

√
n1 + 1 |n1 + 1, n2)

a1 |n1 , n2) =
√

n1 |n1 − 1, n2)

}
(54)

which (in the company of its 2 companion) enable one to take “hikes” of the
form

|n1 , n2)initial �	�	�	�↘ |n1 , n2)final

These are the elemental steps in the jm notation standard to the quantum
theory of angular momentum:

at
1 |j, m〉 =

√
j + m + 1 |j + 1

2 , m + 1
2 〉 : ↗

a1 |j, m〉 =
√

j + m |j − 1
2 , m − 1

2 〉 : ↙
at

2 |j, m〉 =
√

j − m + 1 |j + 1
2 , m − 1

2 〉 : ↖
a2 |j, m〉 =

√
j − m |j − 1

2 , m + 1
2 〉 : ↘




(55)

The arrows on the right refer to the following diagram:

• • • • • • •
◦ ◦ ◦ ◦ ◦ ◦

• • • • •
◦ ◦ ◦ ◦

• • •
◦ ◦

•
Figure 1: Diagram of the jm values that enter into the description
of angular momentum states. The value of j is constant on a row,
and augments by 1

2 when one ascends from one row to the next. The
value of m augments by 1 when one steps to the right on any row.
One has m = −j on the left border, m = +j on the right border,
with j = 0, 1

2 , 1, 3
2 , . . . Integral point are indicated •, half-integral

points marked with a ◦.

It follows that the action of at
1 a2

at
1 a2 |j, m〉 =

√
(j + m + 1)(j − m) |j, m + 1〉 : 	↗

preserves j but augments m: m �→ m + 1. In short, it executes a step to the
right along the j-row. At the right end of the row one has the state

|j,+j〉 = |2j, 0) =
1√

(2j)!(0)!
(at

1)
2j |0)
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which is killed by at
1 a2:

at
1 a2 |j,+j〉 = 0 because a2|0) = 0

Similarly,

at
2 a1 |j, m〉 =

√
(j − m + 1)(j + m) |j, m − 1〉 : ↖�

preserves j but diminishes m: m �→ m − 1. In short, it executes a step to the
left along the j-row. At the left end of the row one has the state

|j,−j〉 = |0, 2j) =
1√

(0)!(2j)!
(at

2)
2j |0)

which is killed by at
2 a1:

at
2 a1 |j,−j〉 = 0 because a1|0) = 0

These remarks account for the action of the “ladder operators” J±, which
Griffiths20 (§4.3.1) calls “raising/lowering” operators, but which I would find it
more natural to call “step right/left” operators.

Extending the preceding discussion now in a direction not encountered in
the textbooks. . .we note first that such right/left stepping is achieved also by

a2 at
1 : �↘

a1 at
2 : ↙	

Climbing (straight) up/down can be accomplished

at
1 at

2 : 	
↗

or at
2 at

1 : �
↖

a1 a2 : ↙
	

or a2 a1 : ↘
�

. . .which is to say: by appeal to resources that are not available to the standard
theory .

Generating function techniques. . . .were always favored by Schwinger, often
used by him to good advantage. Let us, with him, look upon (53) as an
invitation to construct the operator-valued object

G(u) ≡
∑
j�m

1
(j + m)!(j − m)!

(u1 at
1)

j+m (u2 at
2)

j−m (56.1)

where the sum ranges over the �-population of jm-points shown in Figure 1.
We have

=
∑

j

1
(2j)!

(
u1 at

1 + u2 at
2

)2j

which—because j ∈
{
0, 1

2 , 1, 3
2 , . . .

}
—becomes

= e (u1 at
1 + u2 at

2) ≡ euat
(56.2)
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From
G(u)|0) =

∑
j�m

1√
(j + m)!(j − m)!

(u1)
j+m (u2)

j−m |j, m〉 (57)

we discover the sense in which G(u)|0) is an “eigenstate generating function.”

Look now to the inner product of G(u)|0) and G(v)|0):

(0|Gt(v)G(u)|0) = (0|ev∗ a euat
|0) (58)

The operators a and at commute with their commutator(s), so by a celebrated
Campbell-Baker-Hausdorff identity due to Kermack & McCrae34 we have

ev∗ a euat
= e[v

∗ a , uat] · euat
ev∗ a

= e(v
∗
1u1 + v∗2u2) · euat

ev∗ a (59)

The operators are now ordered in such a way that we can use the facts that |0)
is (i) killed by annihilation operators and (ii) normalized. . . to obtain

(0|ev∗ a euat
|0) = e(v

∗
1u1 + v∗2u2)

=
∑

k

1
k!

(v∗1u1 + v∗2u2)k

=
∑

j

1
(2j)!

(v∗1u1 + v∗2u2)2j : j = 0, 1
2 , 1, 3

2 , . . .

=
∑

j

m=+j∑
m=−j

1
(j + m)!(j − m)!

(v∗1u1)
j+m(v∗2u2)

j−m

=
∑
j�m

∑
j�m

(v∗1) j+m(v∗2) j−m√
(j + m)!(j − m)!

δjjδmm
(u1) j+m(u2) j−m√
(j + m)!(j − m)!

Bringing (57) to the left side of (58) we on the other hand have

(0|Gt(v)G(u)|0) =
∑
j�m

∑
j�m

(v∗1) j+m(v∗2) j−m√
(j + m)!(j − m)!

〈jm|jm〉 (u1) j+m(u2) j−m√
(j + m)!(j − m)!

The implication is that
〈jm|jm〉 = δjjδmm (60)

Note that Schwinger’s argument (of which I have presented a somewhat
streamlined version) makes critical use of resources—the a-operators—that
again are not available to the standard theory . And that it makes no use of
the Kronecker product technology which, within the field-theoretic setting, led
us to the entirely equivalent statements

(n1, n2|n1, n2) = δn1n1
δn2n2

(61)

34 See equation (73.6) in Chapter 0 of advanced quantum topics ().
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In the text of an ancient seminar35 I have described a method—taken
from some unpublished Schwinger class notes—for constructing simultaneously
the eigenvalues and eigenstates of Hoscillator. One expects the technique to
be adaptable to isotropic 2-dimensional oscillators, therefore to the quantum
theory of angular momentum. . . so is not surprised to find discussion of precisely
this idea in Schwinger’s Appendix A. Look, by way of preparation, to the
pattern of the argument in the simplest instance: one has, quite generally,

H =
∑

|n)En(n| =⇒ U(t) ≡ e−(i/�)H t =
∑

|n)e−(i/�)Ent(n| (62)

which for an oscillator becomes36

Uosc(t) = e−iω(a+a+ 1
2 I) t

= e−i 1
2 ωt · e−iω(a+a) t

One can, with sufficient cleverness,37 use
[
a , a+

]
= I to bring operator on the

right to ordered form

= e−i 1
2 ωt ·

a
+

[
exp

{(
e−iωt − 1

)
a+ a

}]
a

= e−i 1
2 ωt ·

∑
n

e−inωt (a+)n

√
n!

P0

(a)n

√
n!

(63)

and to establish that

P0 ≡
a
+

[
e−a+a

]
a

• is a projection operator: P2
0 = P0;

• has unit trace (so projects onto a single state);
• projects onto a state killed by a : a P0 = 0 .

So Schwinger—magician that he is—writes P0 ≡ |0)(0| and

|n) ≡ (a+)n

√
n!

|0) (64.1)

and observes that in (63) he has reproduced the “spectral resolution” design of
(62), with

En = �ω
(
n + 1

2

)
(64.2)

By a modification of the generating function technique he has produced—at a
single blow—both the eigenvalues & the eigenfunctions of Hoscillator. His similar
but more ambitious objective in Appendix A is to construct simultaneously
the eigenvalues and eigenfunctions both of J2 and of J3.

35 “An operator ordering technique with quantum mechanical applications,”
(Reed College Physics Seminar of  October ), which can be found in
collected seminars –. See more recently (92) in the notes34 just
cited.

36 To avoid confusion of t with t we will, throughout this discussion, use + to
denote the adjoint.

37 Relevant tricks were the subject of that “ancient seminar.”
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Note first that we can—by (48.7), and very much to our advantage—look
instead for the eigenvalues/eigenvectors of

N = a+
1 a1 + a+

2 a2 and M = a+
1 a1 − a+

2 a2

i.e., of N1 = a+
1 a1 and N2 = a+

2 a2 ; by this point we have, in effect, converted
the angular momentum problem into the isotropic oscillator problem. It
becomes therefore entirely natural, in the light of the preceding discussion,
to introduce the unitary operator

V(r, s) = ei (r a+1 a1+s a+2 a2) : r and s real (65)

= ei r a+1 a1 · ei s a+2 a2 : a1’s commute with a2’s

Drawing again upon the operator-ordering theorem that gave (63) we find

V(r, s) =
∑

n

ei(rn1+sn2)
(a+

1 )n1(a+
2 )n2√

n1! n2!
P0

(a1)
n1(a2)

n2√
n1! n2!

(66)

P0 ≡ |0, 0)(0, 0|

So we write

|n1, n2) ≡
(a+

1 )n1(a+
2 )n2√

n1! n2!
|0, 0) : eigenvectors

and have

N1|n1, n2) = n1|n1, n2)
N2|n1, n2) = n2|n1, n2)

}
: associated eigenvalues

Therefore
N |n1, n2) = (n1 + n2) |n1, n2)
M |n1, n2) = (n1 − n2) |n1, n2)

These statements place us again in position to reproduce equations (51)–(53),
which provide

J2|jm〉 = �
2j(j + 1)|jm〉 and J3|jm〉 = �m|jm〉

with
{
j, m

}
ranging on the � of Figure 1.

The argument has supplied no information we did not already possess,
but is of some methodological interest. We note that it has, once again, drawn
upon resources that are not available to the standard quantum theory of angular
momentum. And that the argument extends straightforwardly to the theory of
N -dimensional oscillators; i.e., to the bosonic field theory of N -state systems.
In the latter applications the symmetry group is SU(N): the theory of angular
momentum has been left behind.


